首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173024篇
  免费   17180篇
  国内免费   12267篇
化学   92711篇
晶体学   1803篇
力学   11895篇
综合类   667篇
数学   43423篇
物理学   51972篇
  2024年   105篇
  2023年   2003篇
  2022年   2291篇
  2021年   3307篇
  2020年   4121篇
  2019年   3877篇
  2018年   13093篇
  2017年   12648篇
  2016年   10400篇
  2015年   5472篇
  2014年   6089篇
  2013年   7857篇
  2012年   12710篇
  2011年   19379篇
  2010年   11971篇
  2009年   12027篇
  2008年   12965篇
  2007年   14333篇
  2006年   5833篇
  2005年   5938篇
  2004年   5145篇
  2003年   4845篇
  2002年   3641篇
  2001年   2466篇
  2000年   2237篇
  1999年   2132篇
  1998年   1865篇
  1997年   1658篇
  1996年   1682篇
  1995年   1462篇
  1994年   1308篇
  1993年   1082篇
  1992年   945篇
  1991年   836篇
  1990年   694篇
  1989年   556篇
  1988年   430篇
  1987年   391篇
  1986年   387篇
  1985年   307篇
  1984年   229篇
  1983年   188篇
  1982年   166篇
  1981年   116篇
  1980年   105篇
  1979年   68篇
  1978年   56篇
  1973年   42篇
  1914年   45篇
  1909年   41篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Mature microRNAs (miRNAs) in extracellular vesicles (EVs) are involved in different stages of cancer progression, yet it remains challenging to precisely detect mature miRNAs in EVs due to the presence of interfering RNAs (such as longer precursor miRNAs, pre-miRNAs) and the low abundance of tumor-associated miRNAs. By leveraging the size-selective ability of DNA cages and polyethylene glycol (PEG)-enhanced thermophoretic accumulation of EVs, we devised a DNA cage-based thermophoretic assay for highly sensitive, selective, and in situ detection of mature miRNAs in EVs with a low limit of detection (LoD) of 2.05 fM. Our assay can profile EV mature miRNAs directly in serum samples without the interference of pre-miRNAs and the need for ultracentrifugation. A clinical study showed that EV miR-21 or miR-155 had an overall accuracy of 90 % for discrimination between breast cancer patients and healthy donors, which outperformed conventional molecular probes detecting both mature miRNAs and pre-miRNAs. We envision that our assay can advance EV miRNA-based diagnosis of cancer.  相似文献   
992.
Photo-assisted reverse water gas shift (RWGS) reaction is regarded green and promising in controlling the reaction gas ratio in Fischer Tropsch synthesis. But it is inclined to produce more byproducts in high H2 concentration condition. Herein, LaInO3 loaded with Ni-nanoparticles (Ni NPs) was designed to obtain an efficient photothermal RWGS reaction rate, where LaInO3 was enriched with oxygen vacancies to roundly adsorbing CO2 and the strong interaction with Ni NPs endowed the catalysts with powerful H2 activity. The optimized catalyst performed a large CO yield rate (1314 mmol gNi−1 h−1) and ≈100 % selectivity. In situ characterizations demonstrated a COOH* pathway of the reaction and photoinduced charge transfer process for reducing the RWGS reaction active energy. Our work provides valuable insights on the construction of catalysts concerning products selectivity and photoelectronic activating mechanism on CO2 hydrogenation.  相似文献   
993.
The low-dimensional halide perovskites have attracted increasing attention due to their improved moisture stability, reduced defects, and suppressed ions migration in many optoelectronic devices such as solar cells, light-emitting diodes, X-ray detectors, and so on. However, they are still limited by their large band gap and short charge carriers’ diffusion length. Here, we demonstrate that the introduction of metal ions into organic interlayers of two-dimensional (2D) perovskite by cross-linking the copper paddle-wheel cluster-based lead bromide ([Cu(O2C−(CH2)3−NH3)2]PbBr4) perovskite single crystals with coordination bonds can not only significantly reduce the perovskite band gap to 0.96 eV to boost the X-ray induced charge carriers, but can also selectively improve the charge carriers’ transport along the out-of-plane direction and blocking the ions motion paths. The [Cu(O2C−(CH2)3−NH3)2]PbBr4 single-crystal device can reach a record charges/ions collection ratio of 1.69×1018±4.7 % μGyair−1 s, and exhibit a large sensitivity of 1.14×105±7% μC Gyair−1 cm−2 with the lowest detectable dose rate of 56 nGyair s−1 under 120 keV X-rays irradiation. In addition, [Cu(O2C−(CH2)3−NH3)2]PbBr4 single-crystal detector exposed to the air without any encapsulation shows excellent X-ray imaging capability with long-term operational stability without any attenuation of 120 days.  相似文献   
994.
It is a formidable challenge in polycondensation to simultaneously construct multiple covalent bonds to prepare double-stranded polymers of intrinsic microporosity (PIMs) with fused multicyclic linkages. To the best of our knowledge, this is the first study to develop a self-accelerating Diels–Alder reaction for successfully preparing double-stranded PIMs with fused multicyclic backbone structures. A self-accelerating Diels–Alder reaction was developed based on the [4+2] cycloaddition of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) and ortho-quinone compounds. In this reaction, the cycloaddition of ortho-quinone with the first alkyne of DIBOD activates the second alkyne, which reacts with ortho-quinone at a rate constant 192 times larger than that of the original alkyne. Using this self-accelerating reaction to polymerize DIBOD and spirocyclic/cyclic difunctional ortho-quinone monomers, a novel stoichiometric imbalance-promoted step-growth polymerization method was developed to prepare PIMs. The resultant PIMs possess intrinsic ultramicropores with pore sizes between 0.45 to 0.7 nm, high specific surface areas above 646 m2 g−1, and good H2 separation performance.  相似文献   
995.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
996.
Rational design of polymer structures at the molecular level promotes the iteration of high-performance photocatalyst for sustainable photocatalytic hydrogen peroxide (H2O2) production from oxygen and water, which also lays the basis for revealing the reaction mechanism. Here we report a benzoxazine-based m-aminophenol-formaldehyde resin (APFac) polymerized at ambient conditions, exhibiting superior H2O2 yield and long-term stability to most polymeric photocatalysts. Benzoxazine structure was identified as the crucial photocatalytic active segment in APFac. Favorable adsorption of oxygen/intermediates on benzoxazine structure and commendable product selectivity accelerated the reaction kinetically in stepwise single-electron oxygen reduction reaction. The proposed benzoxazine-based phenolic resin provides the possibility of production in batches and industrial application, and sheds light on the de novo design and analysis of metal-free polymeric photocatalysts.  相似文献   
997.
The dual-ratiometric thermometry is one of highly accurate methods for microscopic thermal measurement in biological systems. Herein, a series of chromone derivatives with noncovalently intramolecular interactions (NIIs) were designed and synthesized for ratiometric thermometers. The triplet states of these organic compounds were systematically tuned upon regulating the conformation with NIIs to yield efficient room temperature phosphorescence and large wavelength difference between fluorescence and phosphorescence simultaneously. As a result, an unprecedent organic 3D dual-ratiometric thermometer was established based on the intensity ratio and lifetime ratio of fluorescence/phosphorescence vs temperature, which was used for in vitro and in vivo bio-thermometry with high accuracy. This work provides a novel method to achieve organic dual ratiometric thermometers via tuning the triplet excited states.  相似文献   
998.
Endosomal escape remains a central issue limiting the high protein expression of mRNA therapeutics. Here, we present second near-infrared (NIR-II) lipid nanoparticles (LNPs) containing pH activatable NIR-II dye conjugated lipid (Cy-lipid) for potentiating mRNA delivery efficiency via a s timulus-responsive p hotothermal-promoted e ndosomal e scape d elivery (SPEED) strategy. In acidic endosomal microenvironment, Cy-lipid is protonated and turns on NIR-II absorption for light-to-heat transduction mediated by 1064 nm laser irradiation. Then, the heat-promoted LNPs morphology change triggers rapid escape of NIR-II LNPs from the endosome, allowing about 3-fold enhancement of enhanced green fluorescent protein (eGFP) encoding mRNA translation capacity compared to the NIR-II light free group. In addition, the bioluminescence intensity induced by delivered luciferase encoding mRNA in the mouse liver region shows positive correlation with incremental radiation dose, indicating the validity of the SPEED strategy.  相似文献   
999.
We report a new strategy to fabricate a multifunctional composite photoanode containing TiO2 hollow spheres (TiO2-HSs), Au nanoparticles (AuNPs) and novel NaYF4 : Yb,Er@NaLuF4 : Eu@SiO2 upconversion nanoparticles (UCNPs). The AuNPs are grown on the photoanode film including TiO2-HSs and UCNPs by a simple in situ plasmonic treatment. As a result, an impressive power conversion efficiency of 14.13 % is obtained, which is a record for N719 dye-based dye-sensitized solar cells, demonstrating great potential for the solar cells toward commercialization. This obvious enhancement is ascribed to a collaborative mechanism of the TiO2-HSs exhibiting excellent light-scattering ability, of the UCNPs converting near-infrared photons into visible photons and of the AuNPs presenting outstanding surface plasmon resonance effect. Notably, a steady-state experiment further reveals that the champion cell exhibits 95.33 % retainment in efficiency even after 180 h of measurements, showing good device stability.  相似文献   
1000.
The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5Mn0.3Co0.2O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号